3 research outputs found

    Assessing Black-box Test Case Generation Techniques for Microservices

    Get PDF
    Testing of microservices architectures (MSA) – today a popular software architectural style - demands for automation in its several tasks, like tests generation, prioritization and execution. Automated black-box generation of test cases for MSA currently borrows techniques and tools from the testing of RESTful Web Services. This paper: i) proposes the uTest stateless pairwise combinatorial technique (and its automation tool) for test cases generation for functional and robustness microservices testing, and ii) experimentally compares - with three open-source MSA used as subjects - four state-of-the-art black-box tools conceived for Web Services, adopting evolutionary-, dependencies- and mutation-based generation techniques, and the pro- posed uTest combinatorial tool. The comparison shows little differences in coverage values; uTest pairwise testing achieves better average failure rate with a considerably lower number of tests. Web Services tools do not perform for MSA as well as a tester might expect, highlighting the need for MSA-specific techniques

    Reasoning-Based Software Testing

    Get PDF
    With software systems becoming increasingly pervasive and autonomous, our ability to test for their quality is severely challenged. Many systems are called to operate in uncertain and highly-changing environment, not rarely required to make intelligent decisions by themselves. This easily results in an intractable state space to explore at testing time. The state-of-the-art techniques try to keep the pace, e.g., by augmenting the tester's intuition with some form of (explicit or implicit) learning from observations to search this space efficiently. For instance, they exploit historical data to drive the search (e.g., ML-driven testing) or the tests execution data itself (e.g., adaptive or search-based testing). Despite the indubitable advances, the need for smartening the search in such a huge space keeps to be pressing. We introduce Reasoning-Based Software Testing (RBST), a new way of thinking at the testing problem as a causal reasoning task. Compared to mere intuition-based or state-of-the-art learning-based strategies, we claim that causal reasoning more naturally emulates the process that a human would do to ''smartly" search the space. RBST aims to mimic and amplify, with the power of computation, this ability. The conceptual leap can pave the ground to a new trend of techniques, which can be variously instantiated from the proposed framework, by exploiting the numerous tools for causal discovery and inference. Preliminary results reported in this paper are promising
    corecore